New Exact Solutions for Generalized (3+1) Shallow Water-Like (SWL) Equation
نویسندگان
چکیده
منابع مشابه
Exact Solutions of the Nonlinear Generalized Shallow Water Wave Equation
Submitted: Nov 12, 2013; Accepted: Dec 18, 2013; Published: Dec 22, 2013 Abstract: In this article, we have employed an enhanced (G′/G)-expansion method to find the exact solutions first and then the solitary wave solutions of the nonlinear generalized shallow water wave equation. Here we have derived solitons, singular solitons and periodic wave solutions through the enhanced (G′/G)-expansion ...
متن کاملThe Exact Rational Solutions to a Shallow Water Wave-Like Equation by Generalized Bilinear Method
A Shallow Water Wave-like nonlinear differential equation is considered by using the generalized bilinear equation with the generalized bilinear derivatives 3,x D and 3,t D , which possesses the same bilinear form as the standard shallow water wave bilinear equation. By symbolic computation, four presented classes of rational solutions contain all rational solutions to the resulting Shallow Wat...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملExact Solitary Wave Solutions in Shallow Water
Long's equation describes stationary flows to all orders of nonlinearity and dispersion. Dissipation is neglected. In this paper, Long's equation is used to attempt to model the propagation of a solibore -a train of internal waves in shallow water at the deepening phase of the internal tide. 1. The Solibore Phenomenon The internal tide in shallow water often has a sawtooth shape rather than a s...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Nonlinear Sciences
سال: 2019
ISSN: 2444-8656
DOI: 10.2478/amns.2019.2.00031